

Phytochemical profiling of the leaves of Brassica juncea L. using GC-MS

¹Sharma, A., ¹Kumar, V., ²Kanwar, M. K., ¹Thukral, A. K. and ^{1*}Bhardwaj, R.

¹Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India ²Department of Environmental Science,Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407, India

Article history

<u>Abstract</u>

Received: 8 January 2016 Received in revised form: 20 April 2016 Accepted: 23 April 2016

<u>Keywords</u>

GC-MS Brassica juncea Phytochemical profiling Leaf extract

Introduction

Brassica juncea L. commonly known as Indian mustard belongs to family brassicaceae. B. juncea is an economically important plant widely used as an oil source, a green vegetable and also having a medicinal value. This species has been described in traditional remedies in the ancient literature (Manohar et al., 2009). Indian mustard is consumed as leafy vegetable and is a source of various micronutrients as well as antioxidants, vitamin c and e, β -carotenoids etc. B. juncea is believed as eco-friendly source for various nutraceuticals or drugs which are used to prevent and cure of wide range of non-communicable diseases in present time (Kumar et al., 2011). Food preparation of Indian mustard leaves is helpful in lowering the cost for diabetic patients suffering with comorbid anxiety disorders (Thakur et al., 2013). Plants of genus *Brassica* are also known for the production of various volatile organic compounds like ketones, aldehydes, esters, alcohols, terpenes and glucosinolates. These volatile compounds help in pollination by attracting various insects and animals, as well as they protect plants from herbivorous attack (Kessler and Baldwin, 2002). B. juncea is reported to produce bio-chemicals including glycosides, flavonoids, phenols, sterols, triterpene alocohols, proteins and carbohydrates (Lie et al., 2000; Yokozawa et al., 2002; Das et al., 2009; Jung et al., 2009). Methanolic extracts of B. juncea leaves were observed to possess antihyperglycemic activity (Manohar et al., 2009; Rahmatullah et al., 2010;

Brassica juncea L. is a source of several phytochemicals of economic importance. The aim of the present study was to identify active phytochemicals from the leaves of 60 days old plants after extraction with different solvents. Number of phytochemicals detected were 51 (chloroform), 48 (ethyl-acetate), 40 (methanol), 33 (petroleum ether), and 28 (n-hexane). The major compounds identified were benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester (22.98%, in methanol), n-eicosane (26.69%, in ethyl acetate), n-pentacosane (50.0%, in chloroform) and n-tetratetracontane (42.47 and 49.19%, in petroleum ether and n-hexane respectively). In all of the extracts, it was observed that compounds which belonging to alkane group dominated the most, followed by carboxylic acids containing fatty acids.

© All Rights Reserved

Valavala et al., 2011). Dried methanolic extracts were found to reduce diabetes related mental health problem (Kumar et al., 2011; Thakur et al., 2013). The leaves of B. juncea are utilized to produce medicines which act as stimulants, diuretics and expectorants (Farrell et al., 1985). Indian mustard is also known for its therapeutically pharmacological uses due to its active bio-constituents (Kumar et al., 2011). Glucosinolates and isothiocyanates are reported to be very active in B. juncea (Hill et al., 1987; McNaughton and Marks, 2003) which act as anti-cancerous and anti-microbial compounds (Luciano and Holley, 2009; Okulicz, 2010; Zhang et al., 2010). Leaves of Indian mustard were also reported to have anti-depressant effects during diabetes (Thakur et al., 2014). The presence of different brassinosteroids namely castasterone, teasterone, 24-epibrassinolide and typhasterol have been reported from B. juncea (Kanwar et al., 2015). 24-epibrassinolide is reported to enhance the phytochemical biosynthesis in B. juncea under imidacloprid pesticide stress (Sharma et al., 2015a, 2015b). Keeping in view the edible and medicinal value of *B. juncea* L., the present study is focused on the identification of various active bio-chemicals from the leaves of 60 days old plants using GC-MS.

Materials and Methods

Plant material

Seeds of *B. juncea* L. variety RLC-1 were procured from Punjab Agricultural University,

Table 1.	Phytochemi	cal profilin	g of chlor	oform extract	ts
of 60 d	av old leave	s of <i>B. iunc</i>	<i>ea</i> L. plar	nts by GC-MS	5

Table 2. Phytochemical profiling of ethyl-acetate extracts of 60 day old leaves of *B. juncea* L. plants by GC-MS

Peak No.	Name of compound	Retention	Area %
		time	
1	2,4-Bis(tert-butyl)-phenol	13.58	0.40
2	2-Methyl-decane	13.66	0.10
3	Hexadecane	14.25	0.10
4	Cyclotetradecane	14.82	0.20
5	Pentadecane	14.95	0.10
6	Mvristic acid	16.71	0.20
7	5-Eicosene (E)	17.15	0.50
8	Neophytadiene	17.64	4 20
9	2-Hexadecene 371115-tetramethyl- [R-	17.75	0.30
-	[R*,R*-(E)]]		
10	Dodeca-1, 6-dien-12-ol, 6, 10-dimethyl	17.89	0.60
11	Methyl stearidonate	18.03	0.20
12	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	18.07	1.10
13	Benzenepropanoic acid, 3,5-bis(1,1-	18.37	0.20
	dimethylethyl)-4-hydroxy- methyl ester		
14	9-Octadecenoic acid, 12-(acetyloxy)-	18.41	0.20
	methyl ester		
15	Alpha-linolenic acid	18.49	1.30
16	Oleic acid	18.81	2.00
17	2,6,10,15-Tetramethylheptadecane	19.03	0.20
18	Hexadecanoic acid- ethyl ester	19.11	0.20
19	3-Eicosene. (E)	19.21	0.50
20	n-Eicosane	1930	0.20
21	Linolenic acid-methyl ester	20.03	0.50
22	trans-Phytol	20.26	1 10
23	Gamolenic acid	20.43	6.80
24	Docosanoic acid	20.70	0.80
25	Tetradecanoic acid_ethyl ester	20.70	0.10
26	Tridecanol 2-ethyl-2-methyl	21.04	0.20
20	9 Ejeosene (E)	21.04	0.20
27	n-Dentadacana	21.09	0.20
20	n Hevadegul iodida	22.10	0.10
20	Havadaarihantafluorohuturata	22.24	0.10
21	n Nonadoonno	22.01	0.40
22	Triogram	22.00	0.30
52 22	1 2 Demonstration demonstration and dispetid action	25.08	0.10
24	1,2-Benzenedicarboxylic acid-dioctyl ester	23.74	0.10
54 25	A c 11 Trimethaldedeen a	24.42	0.20
55	2,6,11-1 rimethyldodecane	24.60	0.10
30	1-Docosanoi	25.19	0.30
37	n-Octacosane	25.38	1.00
38	Tetracosan-1-ol	26.36	0.20
39	n-Tetratetracontane	26.45	0.30
40	1-Octacosanol	27.52	2.60
41	n-Pentacosane	27.82	50.0
42	17-Pentatriacontene	28.68	0.40
43	8-Hexylpentadecane	29.35	0.50
44	Palmitaldehyde	29.75	0.60
45	Tetrapentacontane, 1,54-dibromo	30.66	5.30
46	Stearyl alcohol	31.10	3.70
47	Nonadecylpentafluoropropionate	31.24	3.00
48	n-Hentriacontane	31.37	2.80
49	Tridecanaldehyde	34.55	1.70
50	Cholesteryl	35.06	2.90
51	Propionic acid anhydride	37.48	0.60
	•		

Ludhiana, India, and were grown in pots.

Sample preparation

For phytochemical profiling, 1 g of 60 days old leaves were separately extracted with 50 ml of methanol, ethyl acetate, chloroform, petroleum ether and n-hexane. The extracts were dried at 50°C using rotary evaporator and the residues were further reconstructed to 2 ml with respective solvents.

Deal: No	Name of compound	Detention	A roo 0/
Peak NO.	Name of compound	Ketenuon	Area 70
		time	
1	n-Octyl acetate	6.64	0.15
2	1-Dodecene	8.07	2.21
3	n-Tetradecane	8.36	0.28
4	deltaNonalactone	8.74	0.65
5	n-Dodecane	10.51	0.35
6	Linoleic acid	10.75	0.12
7	Cyclopropane, tetramethylpropylidene	11.44	0.16
8	1-Pentadecene	12.05	5.44
9	Pentadecane	12.21	0.80
10	Decanoic acid, -octyl ester	12.41	0.24
11	1,2-Cyclopentanedicarboxylic acid, 4-	12.63	0.17
	(1,1-dimethylethyl)-dimethyl ester, (1,		
	alpha, 2. beta, 4. beta)		
12	2-Cyclopentene-1-undecanoic acid	12.79	0.13
13	2.4-Di-tert-butylphenol	13.58	5.97
14	n-Tridecane	13.65	0.64
15	9-Methyl-Z-10-pentadecen-1-ol	13 75	0.32
16	9-Octadecene (E)	14.83	7.95
17	n-Hexadecane	14.95	0.56
18	Hentadecane	16.14	0.17
10	5-Ficosene (F)	17.15	8 18
20	1 Chlorooctadecane	17.25	0.10
20	Tetradecancia acid 1 mathulathul ester	17.40	0.10
21	1.2 Benzon edicarboxulia acid	17.40	0.39
44	1,2-Benzenedicarboxync acid,-	17.55	0.24
22	didodecyl ester	17.64	2.80
25	2 7 11 15 Tetramethod 2 hourdearn 1	17.04	2.09
24	3, /, 11, 15-1 etrametny1-2-nexadecen-1- ol	17.89	0.43
25	n-Octadecanal	18.07	0.82
26	Phthalic acid-butyl undecyl ester	18.49	2.87
27	Oleic acid	18.82	1.69
28	trans-2-Octenol	18.95	0.69
29	3-Eicosene, (E)	19.22	6.41
30	trans-Phytol	20.25	0.45
31	Gamolenic acid	20.42	2.79
32	Stearic acid	20.70	0.35
33	9-Eicosene, (E)	21.09	3.74
34	Heptadecyltrifluoroacetate	22.80	1.87
35	1,2-Benzenedicarboxylic acid, dioctyl	23.74	1.75
	ester		
36	Octadecvltrifluoroacetate	24.41	0.93
37	n-Tetratetracontane	25.38	0.54
38	2-Hexvl-1-decanol	26.36	0.44
39	Farnesane	26.44	0.34
40	1-Docosanol	27.51	1.15
41	n-Ficosane	27.80	26.69
	= Li i i i	21.00	20.07
42	n-Tritetracontane	29.34	0.53
43	Palmitaldehyde	29.74	0.25
44	2L,4L-Dihydroxyeicosane	30.65	1.43
45	Lignocerol	31.08	1.29
46	n-Hexatriacontane	31.38	2.29
47	Myristaldehyde	34.54	0.72
48	Vitamin A aldehyde	35.04	1.15

Analysis by GC-MS

The extracts of B. juncea L. leaves were analysed using Shimadzu GCMS-QP2010 Plus. Helium gas was used as carrier gas, the injection temperature was set at 280°C, initial column temperature was 70°C, held for 6 minutes before increased to 250°C and then 300°C at the rate of 10°C/min. and was held for 10 minutes respectively. Injection mode set was split with 1 minute sampling time, linear flow control mode, 110.8 KPa pressure, 38.9 ml/min total flow and 1.71 ml/min column flow, 47.2 cm/sec linear velocity, analytical column used was DB-5ms with 30 m length and 0.25 mm id. Ion source temperature was 250°C and interface temperature was 290°C.

Identification of the phytochemicals

Phytochemicals detected were compared with National Institute of Standard and Technology (NIST08s) and Wiley7 library using mass spectra.

Results and Discussion

GC-MS analysis of 60 days old B. juncea L. leaves by using different solvents resulted in the detection of number of phytochemicals. In chloroform, a maximum number of 51 compounds were detected, followed by 48, 40, 33, and 28 compounds in ethylacetate, methanol, petroleum ether and n-hexane extracts respectively. Oleic acid and linolenic acid were found to be present in all the extracts. The main compounds detected in chloroform extract (Table 1) were n-pentacosane (50.0%, RT 27.82), gamolenic acid (6.80%, RT 20.43) and tetrapentacontane, 1, 54-dibromo (5.30%, RT 30.66). The major compounds identified in ethyl-acetate extract (Table 2) were n-eicosane (26.69%, RT 27.80), 5-eicosene (E) (8.18%, RT 17.16) and 9-octadecene (E) (7.95%, RT 18.83). In methanolic extract (Table 3), main phytochemicals detected were benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy, methyl ester (22.98%, RT 18.38), cis,cis,cis-7,10,13hexadecatrienal (12.42%, RT 20.43) and eicosanoic acid (7.87%, RT 18.83). The major compounds identified in petroleum ether extract (Table 4) were n-tetratetracontane (42.47%, RT 27.81), cis,cis,cis-7,10,13-hexadecatrienal (14.61%, RT 20.46) and pentadecanoic acid (11.24%, RT 18.86). Main compounds detected in n-hexane extracts (Table 5) were n-tetratetracontane (49.19%, RT 27.83), alpha-linolenic acid (12.30%, RT 20.48) and 2L,4Ldihydroxyeicosane (6.22%, RT 30.67).

Most of the detected compounds are biologically active and are known to strengthen the plant defence system as these are part of plant protective compounds like phytoanticipins and phytoprotectants (Hossain *et al.*, 2006; Shah and Hossain, 2014; Hossain and Shah, 2015). Present study gives a base line data of the phytochemicals present in *B. juncea* L. plants.

Conclusion

GC-MS analysis of the leaves of B. juncea L.

Peak	Name of compound	Retention	Area %
No.		time	
1	2-Propyl-2-pentenal	4.44	1.28
2	3-n-Butylthiolane	5.85	1.56
3	3,5-Hexadien-2-ol, 2-methyl	8.31	1.56
4	2-Methoxy-4-vinylphenol	10.15	1.04
5	1-Dodecene	12.03	1.01
6	2H-Pyran-2-on, 5,6-dihydro-4-(2,3-	14.01	0.96
	dimethyl-2-buten-4-yl)		
7	1-Pentadecene	14.81	4.07
8	Pentanoic acid-octyl ester	14.94	0.70
9	Gamma-pyronene	15.84	0.66
10	P-T-Amylphenol	15.93	2.37
11	Nonyl-phenol mix of isomers	16.04	1.87
12	4-Nonylphenol	16.13	2.28
13	meso-Hexestrol	16.24	0.32
14	Benzestrol	16.28	0.58
15	Cyclopropanecarboxylic acid, 3-(3-	16.34	0.65
	methoxy-2-methyl-3-oxo-1-propenyl)-2,2-		
	dimethyl-, 3-(2-butenyl)-2-methyl-4-oxo-		
	2-cyclopenten		
16	p-tert-Butylphenol	16.45	2.33
17	A cetic acid, 4-(7-	16.53	1.40
	methylydenebicyclo[3.3.1]non-2-en-3-		
	yloxy)-butyl ester		
18	Oleic acid	16.70	0.59
19	1-Hexadecene	17.14	5.26
20	Neophytadiene	17.63	4.77
21	Oxirane, tetradecyl	17.88	0.75
22	9-Eicosyne	18.06	1.07
23	Benzenepropanoic acid, 3,5-bis(1,1-	18.38	22.98
	dimethylethyl)-4-hydroxy- methyl ester		
24	Linolenic acid-methyl ester	18.48	2.46
25	Eicosanoic acid	18.83	7.87
26	3-Eicosene, (E)	19.21	3.18
27	Gamolenic acid	20.02	0.93
28	Oxirane, hexadecyl	20.25	1.52
29	cis,cis,cis-7,10,13-Hexadecatrienal	20.43	12.42
30	Stearic acid	20.70	2.29
31	1-Docosanol	21.08	1.35
32	Lignocerol	22.80	0.52
33	Linoleic acid	23.55	0.33
34	8-Methyl-6-nonenamide	25.73	1.36
35	Farnesol	26.56	0.33
36	Myristaldehyde	27.50	0.71
37	Sulfurous acid, 2-propyl tridecyl ester	27.74	0.60
38	Oxirane, [(hexadecyloxy)methyl]	30.63	1.17
39	Nonadecanol	31.20	0.85

by using different organic solvents resulted in the detection of 132 different compounds. In chloroform extracts, the compounds detected were maximum as compared to the n-hexane extracts where compounds detected were minimum.

35.03

2.04

Acknowledgement

Vitamin A aldehyde

40

Department of Science and Technology (DST), Government of India, is duly acknowledged for providing INSPIRE fellowship for Anket Sharma research work.

Table 3. Phytochemical profiling of methanolic extracts of 60 day old leaves of *B. juncea* L. plants by GC-MS

550

Table 4. Phytochemical profiling of petroleum ether extracts of 60 day old leaves of *B. juncea* L. plants by GC-MS

Peak No.	Name of compound	Retention	Area %
		time	
1	Cyclopentaneundecanoic acid- methyl	8.28	0.28
	ester		
2	Benzenepropanoic acid, alpha-	9.59	0.17
	(hydroxyimino		
3	2,3,5,8-T etramethyldecane	10.15	0.19
4	1-Undecene, 4-methyl	11.00	0.25
5	2,4-Di-tert-butylphenol	13.57	0.27
6	2-Methyldecane	13.65	0.27
7	Farnesane	14.24	0.18
8	Palmitic acid	14.40	0.24
9	Octadecyl chloride	14.94	0.13
10	Octadecane	16.13	0.12
11	Hexadecyl chloride	16.31	0.12
12	Myristic acid	16.72	0.69
13	n-Eicosanol	17.14	0.08
14	2-Butyloctanol	17.25	0.10
15	Linolenic acid-methyl ester	18.52	3.26
16	Linoleic acid	18.59	1.64
17	Pentadecanoic acid	18.86	11.24
18	Oleic acid	19.61	0.37
19	trans-Phytol	20.26	1.00
20	cis, cis, cis-7, 10, 13-Hexadecatrienal	20.46	14.61
21	Docosanoic acid	20.71	1.03
22	1,2-Benzenedicarboxylic acid-dinonyl	23.74	0.56
	ester		
23	n-Tritetracontane	25.38	0.90
24	Farnesol	26.56	2.27
25	1-Octacosanol	27.52	3.33
26	n-Tetratetracontane	27.81	42.47
27	Sulfurous acid, 2-propyl tridecyl ester	29.34	0.44
28	Myristaldehyde	29.75	0.94
29	Oxirane, [(hexadecyloxy)methyl]	30.65	3.94
30	Nonadecanol	31.08	2.21
31	Docosylpentafluoropropionate	31.23	0.91
32	11-n-Decyltetracosane	31.37	3.41
33	Palmitaldehyde	34.55	2.38

References

- Das, R., Bhattacherjee, C. and Ghosh, S. 2009. Preparation of mustard (*Brassica juncea* L.) protein isolate and recovery of phenolic compounds by ultrafiltration. Industrial and Engineering Chemistry Research 48: 4939-4947.
- Farrell, K. T. 1999. Spices, condiments and seasonings. 2nd ed. Gaithersburg, USA.
- Hill, C. B., Williams, P. H., Carlson, D. G. and Tookey, H. L. 1987. Variation in glucosinolates in oriental Brassica vegetables. Journal of the American Society for Horticultural Science 112: 309-313.
- Hossain, M. A. and Shah, M. D. 2015. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arabian Journal of Chemistry 8: 66-71.
- Hossain, M. A., Salehuddin, S. M. and Ismail, Z. 2006. Rosmarinic acid and methyl rosmarinate from Orthosiphon stamineus, Benth. Journal of the

Table 5.	Phyto	ochemi	cal p	rofiling	of	n-hexan	e extracts	of
60 da	y old	leaves	of <i>B</i> .	juncea	L.	plants by	GC-MS	

Peak	Name of compound	Retention	Area %
No.		time	
1	Phenethanol	4.94	0.48
2	n-Undecane	5.28	1.24
3	n-Dodecane	8.36	0.32
4	n-Octadecyl chloride	18.30	0.23
5	Linolenic acid-methyl ester	18.51	1.88
6	Linoleic acid	18.58	0.31
7	Oleic acid	18.85	4.74
8	Octadecane	19.30	0.36
9	trans-Phytol	20.25	1.10
10	A lpha-linolenic acid	20.48	12.30
11	Docosanoic acid	20.71	0.60
12	Heptacosane, 1-chloro	21.16	0.38
13	1-Octadecanesulphonyl chloride	22.04	0.32
14	Sulfurous acid, pentadecyl 2-propyl ester	22.87	0.27
15	1,2-Benzenedicarboxylic acid-ditridecyl ester	23.75	4.19
16	Tritetracontane	25.38	1.04
17	Tetrapentacontan, 1,54-dibromo	26.45	0.46
18	17-Pentatriacontene	27.52	2.34
19	n-Tetratetracontane	27.83	49.19
20	2-Hexyl-1-decanol	28.68	0.20
21	n-Nonadecane	29.35	0.61
22	Palmitaldehyde	29.75	0.90
23	2L,4L-Dihydroxyeicosane	30.67	6.22
24	1-Hentetracontanol	31.08	1.59
25	Tricosylpentafluoropropionate	31.24	1.50
26	n-Eicosane	31.38	3.69
27	Myristaldehyde	34.56	3.10
28	Vitamin A aldehyde	35.05	0.42

Bangladesh Academy of Sciences 30: 167-171.

- Jung, H. A., Woo, J. J., Jung, M. J., Hwang, G. S. and Choi, J. S. 2009. Kaempferol an update on *Brassica juncea* glycosides with antioxidant activity from Brassica juncea. Archives of Pharmacal Research 32: 1379-1384.
- Kanwar, M. K., Poonam and Bhardwaj, R. 2015. Arsenic induced modulation of antioxidative defense system and brassinosteroids in *Brassica juncea* L. Ecotoxicology and Environmental Safety 115: 119-125.
- Kessler, A. and Baldwin, T. T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. The Annual Review of Plant Biology 52: 299-328.
- Kumar, V., Thakur, A. K., Barothia, N. D. and Chatterjee, S. S. 2011. Therapeutic potentials of *Brassica juncea*: an overview. TANG 1: e2.
- Li, J., Ho, C. T., Li, H., Tao, H. and Tao, L. 2000. Separation of sterols and triterpene alcohols from unsaponifiable fractions of three plant seed oils. Journal of Food Lipids 7: 11-20.
- Luciano, F. B. and Holley, R. A. 2009. Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against *Escherichia coli* O157:H7. International Journal of Food Microbiology 131: 240-245.
- Manohar, P. R., Pushpan, R. and Rohini, S. 2009. Mustard and its uses in ayurveda. Indian Journal of Traditional Knowledge 8: 400-404.

- McNaughton, S. A. and Marks, G. C. 2003. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. British Journal of Nutrition 90: 687-697.
- Okulicz, M. 2010. Multidirectional time-dependent effect of sinigrin and allyl isothiocyanate on metabolic parameters in rats. Plant Foods and Human Nutrition 65: 217-224.
- Rahmatullah, M., Shefa, T. F., Hasan, L., Hossain, M. T., Ahmed, S., Mamun, A. A, Islam, M. R., Rahman, S. and Chowdhury, M. H. 2010. A study on antinociceptive and anti hyperglycemic activity of methanol extract of *Brassica juncea* (L.) Czern. leaves in mice. Advances in Natural and Applied Sciences 4: 221-225.
- Shah, M. D. and Hossain, M. A. 2014. Total flavonoids content and biochemical screening of the leaves of tropical endemic medicinal plant *Merremia borneensis*. Arabian Journal of Chemistry 7: 1034-1038.
- Sharma, A., Kumar, V., Singh, R., Thukral, A. K. and Bhardwaj, R. 2015a. 24-Epibrassinolide induces the synthesis of phytochemicals effected by imidacloprid pesticide stress in *Brassica juncea* L. Journal of Pharmacognosy and Phytochemistry 4: 60-64.
- Sharma, A., Kumar, V., Kaur, S. K., Thukral, A. K. and Bhardwaj, R. 2015b. Phytochemicals in *Brassica juncea* L. seedlings under imidacloprid-epibrassinolide treatment using GC-MS. Journal of Chemical and Pharmaceutical Research 7: 708-711.
- Thakur, A. K., Kumar, V. and Chatterjee, S. S. 2013. Anxiolytic-like activity of leaf extract of traditionally used Indian mustard *(Brassica juncea)* in diabetic rats. TANG 3: e7.
- Thakur, A. K., Kumar, V. and Chatterjee, S. S. 2014. Antidepressant like effects of *Brassica juncea* L. leaves in diabetic rodents. Indian Journal of Experimental Biology 52: 613-622.
- Valavala, V. K., Vangipurapu, R. K., Banam, V. R., Pulukurthi, U. M. R. and Turlapati, N. R. 2011. Effect of mustard (*Brassica juncea*) leaf extract on streptozotocin-induced diabetic cataract in wistar rats. Journal of Food Biochemistry 35: 109-124.
- Yokozawa, T., Kim, H. Y., Cho, E. J., Choi, J. S. and Chung, H. Y. 2002. Antioxidant effects of Isorhamnetin 3, 7-di-O-beta-D-glucopyranoside isolated from mustard leaf (*Brassica juncea*) in rats with streptozotocin-induced diabetes. Journal of Agricultural and Food Chemistry 50: 5490-5495.
- Zhang, Y. 2010. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Molecular Nutrition and Food Research 54: 127-135.